Casting poly(urethane‐imide) elastomers with improved thermoviscoelasticity

Author:

Lin Chih‐Lung12ORCID,Lou Yi‐Jyun2ORCID,Cheng Yen‐Yu1ORCID,Rwei Syang‐Peng1ORCID

Affiliation:

1. Institute of Organic and Polymeric Materials National Taipei University of Technology Taipei City Taiwan

2. R&D Department The KUROKI Company Limited New Taipei City Taiwan

Abstract

AbstractPolyurethane (PU) is a versatile material that can be customized to meet specific commercial requirements in different industries because of its favorable mechanical properties. However, it is not resistant to high temperatures, and it requires structural modifications before it can be used in high‐temperature structural materials. In this study, isocyanates and anhydrides are copolymerized at high temperatures to obtain a solvent‐free oligomer, thus eliminating the risks associated with highly polar aprotic solvents. A casting technique is used to synthesize a solid poly(urethane‐imide) (PUI) elastomer. According to the results, casting PUI (CPUI) exhibits optimal physical properties at a hard segment content of 30.5%. Incorporating an ether, symmetric, or imide structure into CPUI may reduce its hysteresis and improve its thermal creep performance. Compared with PU, CPUI exhibits considerably higher creep aging resistance. In dynamic load application tests, CPUI wheels take a substantially longer time to reach failure compared with PU wheels. Overall, CPUI is an environmentally friendly material with high elasticity, low creep, and high heat aging resistance and is suitable for static and dynamic manufacturing applications.

Funder

National Science and Technology Council

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3