A matrix computing method for visualizing switchless controlled 3D hexagonal‐annular rotary braiding process architecture

Author:

Li Jinyu12,Zhang Yifan3,Zhang Tao2ORCID,Yuan Lin1,Wang Chi2,Ren Chengwei2,Gong Xiaobo2,Guo Bin1,Yang He4

Affiliation:

1. School of Materials Science and Engineering Harbin Institute of Technology Harbin China

2. School of Materials Science and Engineering Harbin Institute of Technology Weihai China

3. Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Institute of Composite Materials Tiangong University Tianjin China

4. German‐china Technology Development Co. LTD Tianjin China

Abstract

AbstractNumerous process architectures for fabric molding are investigated because fiber braided structure is closely related to the performance of fiber‐reinforced composites. However, existing methods for calculating process architectures have to deal with the coordinates of each fiber when modeling the three‐dimensional braiding method without individually controlled switches. The amount of data grows geometrically as the number of fibers and braiding steps increases. A methodology that enables simple and efficient computation of a model of the relationship between braiding parameters and fiber structure is urgently needed. This paper proposes a novel algorithm to trace the yarn carrier trajectories through machine simulation with Euler rotation‐matrix operations. To predict the real fabric architecture, a contraction factor is introduced to optimize the yarn trajectory while considering the volume of the yarn. The optimized fabric architecture is explored and the braiding process architecture with different braiding parameters is simulated according to the algorithm. Based on the exploration of the relationship between the braiding parameters and the process structure, a hexagonal‐annular braiding machine was established, which can fabricate fabrics with different cross‐sectional shapes. The simulation results were verified by the braiding experiments.

Funder

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3