Arm‐current sensorless model predictive control for grid‐interfacing modular multilevel converter with reduced switching frequency

Author:

Sharma Ankita1,Chilipi Rajasekharareddy1ORCID,Praveen Kumar Kunisetti V.1ORCID

Affiliation:

1. Department of Electrical Engineering Sardar Vallabhbhai National Institute of Technology Surat Gujarat India

Abstract

AbstractModel predictive control (MPC) emerges as an attractive alternative for the control of modular multilevel converters (MMCs) owing to its superior dynamic performance and ease of implementation. Nevertheless, conventional MPC's performance could be further improved by reducing dependence on weighting factors, switching frequency, and computational burden. To achieve these objectives, an arm‐current sensorless MPC is developed for a grid‐interfacing MMC in this article. The MPC is integrated with an arm‐current sensorless reduced switching frequency voltage balance algorithm that requires only switching vectors (where number of submodules per arm) to optimize the cost function. This method does not require knowledge of arm‐current direction to decide the charging and discharging state of the submodule capacitors. The developed control not only reduces the switching frequency of devices but also eliminates the need to sense the arm currents. As a result, it reduces the system's cost, complexity, computational burden, switching losses and provides a more reliable control method for MMCs with superior dynamic performance. Further, the effect of parameter mismatch on the developed MPC's dynamic performance and stability is studied. The developed MPC's effectiveness is validated through both simulation and experimental results and also compared with existing methods under different conditions.

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3