Field programmable gate array‐based energy‐efficient and fast epileptic seizure detection using support vector machine and quadratic discriminant analysis classifier

Author:

Alam Md. Shamshad1,Hasan Mohd1,Farooq Omar1,Hasan Mehedi2ORCID

Affiliation:

1. Department of Electronics Engineering Z.H. College of Engineering and Technology, Aligarh Muslim University Aligarh India

2. Department of Electrical and Computer Engineering North South University Dhaka Bangladesh

Abstract

AbstractEpilepsy is a serious neurological disorder that results in seizures. It can be diagnosed by analyzing the brain's electrical activity using an electroencephalogram (EEG). However, the detection of seizures from massive EEG datasets is a challenging task. To address this challenge, researchers have developed several machine‐learning classifiers and feature extraction techniques for detecting seizures. This paper proposes an energy‐efficient and fast field programmable gate array (FPGA) architecture for detecting epileptic seizures using minimal computational resources. The seizure detection system uses the one Hjorth parameter (mobility) and another statistical parameter (nonlinear energy) as features and employs two efficient classifiers, quadratic discriminant analysis and linear support vector machine (LSVM), for classifying signals into seizure and nonseizure categories. The feature extractor block is connected individually to each of these classifiers. Subsequently, the performance of these two proposed models is evaluated in terms of accuracy, sensitivity, power consumption, resource utilization, and other metrics. The results demonstrate that the SVM classifier‐based model achieved the highest accuracy (99.4%) and sensitivity (98.8%) while consuming minimal dynamic power (0.057 mW) and utilizing the minimum FPGA resources. Thus, the proposed hardware system offers a reliable and energy‐efficient solution for detecting seizures in clinical and real‐time applications.

Publisher

Wiley

Subject

General Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3