GMM‐LIME explainable machine learning model for interpreting sensor‐based human gait

Author:

Mulwa Mercy Mawia1ORCID,Mwangi Ronald Waweru1,Mindila Agnes1

Affiliation:

1. School of Computing and Information Technology Jomo Kenyatta University of Agriculture and Technology Nairobi Kenya

Abstract

AbstractMachine learning (ML) has been used in human gait data for appropriate assistive device prediction. However, their uptake in the medical setup still remains low due to their black box nature which restricts clinicians from understanding how they operate. This has led to the exploration of explainable ML. Studies have recommended local interpretable model‐agnostic explanation (LIME) because it builds sparse linear models around an individual prediction in its local vicinity hence fast and also because it could be used on any ML model. LIME is however, is not always stable. The research aimed to enhance LIME to attain stability by avoid the sampling step through combining Gaussian mixture model (GMM) sampling. To test performance of the GMM‐LIME, supervised ML were recommended because study revealed that their accuracy was above 90% when used on human gait. Neural networks were adopted for GaitRec dataset and Random Forest (RF) was adopted and applied on HugaDB datasets. Maximum accuracies attained were multilayer perceptron (95%) and RF (99%). Graphical results on stability and Jaccard similarity scores were presented for both original LIME and GMM‐LIME. Unlike original LIME, GMM‐LIME produced not only more accurate and reliable but also consistently stable explanations.

Funder

International Laboratory of Dynamic Systems and Applications, National Research University Higher School of Economics

Publisher

Wiley

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3