Affiliation:
1. Federal College of Dental Technology and Therapy, Enugu, Department of Applied Sciences Enugu Nigeria
2. Department of Engineering, Faculty of Science and Engineering Manchester Metropolitan University Manchester UK
3. Department of Mechatronics Engineering, School of Electrical Systems Engineering and Technology (SESET) Federal University of Technology Owerri Nigeria
4. Department of Biochemistry Faculty of Biological Sciences Nsukka Nigeria
5. Department of Pure and Applied Chemistry University of Maiduguri Maiduguri Nigeria
6. Department of Applied Public Health Cardiff Metropolitan University Cardiff UK
Abstract
AbstractThe emergence of resistance to current antimalarial drugs poses a significant challenge in the fight against malaria. This study aimed to investigate the in vivo antiplasmodial potential of the aqueous extract of fresh and dried leaves of A3 in Plasmodium berghei‐infected (P. berghei) mice. A 4‐day suppressive test was conducted, with infected BALB/c mice receiving artesunate and A3 extracts. The results showed that the tested doses of A3 attenuated the elevation of parasitemia induced by P. berghei, particularly at the dose of 400 mg/kg, and improved hematological indices. Computational techniques, including molecular docking, binding free energy calculations, and ADMET predictions, identified several bioactive compounds in A3 with promising inhibitory potential against lysyl‐tRNA synthetases and Dihydrofolate reductase (DHFR), the crucial enzymes targeted by antimalarial drugs. In this paper, Friedelin, Bauerenol, Epifriedelanol, Alpha‐Amyrenone, Stigmasterol, and beta‐Amyrin acetate were top‐ranked, having docking scores from −10.6 to −9.9 kcal/mol, compared with the −9.4 and −7.1 kcal/mol demonstrated by artesunate and chloroquine, respectively, as standard ligands. Also, it was shown that docking score from the Lysyl‐tRNA protein target (4YCV) ranged from −9.5 to −7.8 kcal/mol in comparison to artesunate (8.1 kcal/mol) and chloroquine (5.6 kcal/mol). The results suggest that the identified compounds in A3 could serve as potential candidates for the development of new anti‐malarial agents.
Subject
General Engineering,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献