Refactoring BZIP2 on the new‐generation sunway supercomputer

Author:

Liu Xiaohui12ORCID,Yin Zekun1,Tian Haodong12,Wan Wubing23,Hua Mengyuan12ORCID,Zhao Wenlai23,Huang Zhenchun34,Gao Ping23,Zhu Fangjin1,Wang Hua1,Duan Xiaohui12

Affiliation:

1. School of Software Shandong University Jinan China

2. National Supercomputing Center in Wuxi Wuxi China

3. Department of Computer Science and Technology Tsinghua University Beijing China

4. Zhejiang Lab Hangzhou China

Abstract

AbstractHigh‐performance computing is progressively assuming a fundamental role in advancing scientific research and engineering domains. However, the ever‐expanding scales of scientific simulations pose challenges for efficient data I/O and storage. The data compression technology has garnered significant attention as a solution to reduce data transmission and storage costs while enhancing performance. In particular, the BZIP2 lossless compression algorithm has been widely used due to its exceptional compression ratio, moderate compression speed, high reliability, and open‐source nature. This paper focuses on the design and realization of a parallelized BZIP2 algorithm tailored for deployment on the New‐Generation Sunway supercomputing platform. By leveraging the unique cache patterns of the New‐Generation Sunway processor, we propose the highly tuned multi‐threading and multi‐node implementations of the BZIP2 applications for different scenarios. Moreover, we also propose the efficient BZIP2 libraries based on the management processing element and computing processing element which support the commonly used high‐level (de)compression interfaces. The test results indicate that the our multi‐threading implementation achieves maximum speedup of 23.09 (8.57) in decompression(compression) compared to the sequential implementation. Furthermore, the multi‐node implementation achieves 50.81% (26.35%) parallel efficiency and peak performance of 16.6 GB/s (52.8 GB/s) for compression(decompression) when scaling up to 2048 processes.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Engineering,General Computer Science

Reference25 articles.

1. DiS CappelloF.Fast error‐bounded lossy HPC data compression with SZ. Paper presented at: 2016 IEEE international parallel and distributed processing symposium (ipdps). IEEE.2016730‐739.

2. A review of data compression techniques;Fitriya LA;Int J Appl Eng Res,2017

3. Comparison of lossless data compression algorithms for text data;Kodituwakku SR;Indian J Comput Sci Eng,2010

4. LauferM FredjE.High Performance Parallel I/O and in‐Situ Analysis in the WRF Model with ADIOS2. arXiv preprint arXiv:2201.08228.2022.

5. Compression Techniques for DNA Sequences: A Thematic Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3