Enhancing EEG signals classification using LSTM‐CNN architecture

Author:

Omar Swaleh M.12ORCID,Kimwele Michael2,Olowolayemo Akeem3,Kaburu Dennis M.2

Affiliation:

1. Engineering and ICT Research Center Kenya Industrial Research and Development Institute Nairobi Kenya

2. School of Computing and Information Technology Jomo Kenyatta University of Agriculture and Technology Nairobi Kenya

3. Department of Computer Science, Faculty of Information and Communication Technology International Islamic University Malaysia Selangor Malaysia

Abstract

AbstractEpilepsy is a disorder that interferes with regular brain activity and can occasionally cause seizures, odd sensations, and momentary unconsciousness. Epilepsy is frequently diagnosed using electroencephalograph (EEG) records, although conventional analysis is subjective and prone to error. The dynamic and non‐stationary nature of EEG structure restricted the performance of Deep Learning (DL) approaches used in earlier work to improve EEG classification. Our multi‐channel EEG classification model, dubbed LConvNet in this paper, combines Convolutional Neural Networks (CNN) for extracting spatial features and Long Short‐Term Memory (LSTM) for identifying temporal dependencies. To discriminate between epileptic and healthy EEG signals, the model is trained using open‐source secondary EEG data from Temple University Hospital (TUH). Our model outperformed other EEG classification models employed in comparable tasks, such as EEGNet, DeepConvNet, and ShallowConvNet, which had accuracy rates of 86%, 96%, and 78%, respectively. Our model attained an amazing accuracy rate of 97%. During additional testing, our model also displayed excellent performance in trainability, scalability, and parameter efficiency.

Funder

Japan International Cooperation Agency

Jomo Kenyatta University of Agriculture and Technology

Pan African University

Publisher

Wiley

Subject

General Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning vs. conventional techniques for processing and classifying EEG brain disorders: A survey;2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3