An adjustable high‐flux LED solar simulator based on dome structure

Author:

Xue Chang‐Wen1,Song Jia‐Yong1,Qin Ze‐Sheng1,Bian Li‐Feng2,Luo Zi‐Jiang3,Yang Chen1ORCID

Affiliation:

1. College of Big Data and Information Engineering Guizhou University Guiyang China

2. Frontier Institute of Chip and System Fudan University Shanghai China

3. Institute of Intelligent Manufacturing Shunde Polytechnic Guangdong Shunde China

Abstract

AbstractHigh‐flux solar simulator (HFSS) commonly serves as a vital instrument for conducting material testing and thermochemical experiments, offering valuable applications in the fields of photovoltaic cells and concentrated solar energy. This paper proposes a continuously adjustable HFSS based on light‐emitting diodes (LEDs), which can be employed for experimental testing in the solar cell aging. First, an irradiation unit module has been built using high‐power LEDs and total internal reflection lenses, and the irradiation performance of the single unit has been validated. In theory, a dome layout model is proposed, in which a detailed geometric analysis is provided for the maximum number of units that can be accommodated on the dome, considering unit size and dome dimensions. Subsequently, aluminum disc has been used as thermal flux sensors, and the irradiation distribution of the system is characterized using a charge‐coupled device observation camera and Lambertian board. The results indicate that the system offers an adjustable average flux ranging from 1.6 to 9.04 kW/m2 when the system input current is in the range of 7.2–54 A. Additionally, the system demonstrates a spatial nonuniformity of 2% within a 10‐mm diameter (Φ = 10 mm) region test region and temporal instability of 2% within 30 min.

Funder

National Natural Science Foundation of China

Shunde Polytechnic

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3