Valorization of oil‐based drilling cuttings as a substitute for bauxite in fracturing proppants application

Author:

Li Xiaogang1,Xiong Junya1ORCID,Yang Zhaozhong1,Chen Hao1

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China

Abstract

AbstractThis study aimed to increase the scale of oil‐based drilling cuttings (OBDCs) resource utilization in the ceramic industry. The sintering process and mechanism were explored based on the analysis of physicochemical properties, phase transitions, and microstructure. The results showed that (1) The main ceramic‐technological characteristics of the OBDC were determined, which belonged to high‐silica solid waste with a high Si–Al ratio and a low acid–base ratio of oxides. (2) The low meltability temperature of the OBDC could largely influence the determination of the sintering temperature range for ceramic products. (3) The chemical components OBDC provided were involved in the formation of molten phases, which could affect dimensional accuracy and mechanical properties. Meanwhile, the dolomite promoted the formation of closed pores and enhanced lightweight performance. (4) Before 800°C, dolomite decomposed and reacted with SiO2 to form silicate, and then a new feldspar crystal appeared. After 1000°C, orthoclase completely melted into the molten phase, only two phases of quartz and diopside existed in the material until 1150°C. When the temperature was higher than 1350°C, the glass transition of the phase was basically intensified. (5) In the analyzed scenarios, the results indicated OBDC can only be doped in low contents and degrades the ceramic material properties.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3