A study on the pressure‐driven flow of magnetized non‐Newtonian Casson fluid between two corrugated curved walls of an arbitrary phase difference

Author:

Mujahid Maham1,Abbas Zaheer1ORCID,Rafiq Muhammad Yousuf1ORCID

Affiliation:

1. Department of Mathematics The Islamia University of Bahawalpur Bahawalpur Pakistan

Abstract

AbstractPressure‐driven movement is a fundamental concept with numerous applications in various industries, scientific disciplines, and fields of engineering. Its proper execution is vital for promoting revolutionary innovations and providing solutions in numerous sectors. Therefore, this article scrutinizes the pressure‐driven flow of magnetized Casson fluid between two curved corrugated walls. The geometry of the channel is represented mathematically in an orthogonal curvilinear coordinate system. The corrugation grooves are described by sinusoidal functions with phase differences between the corrugated curved walls. The boundary perturbation method is used to find the analytical solution for the velocity field and volumetric flow rate, taking the corrugation amplitude as the perturbation parameter. The results show that the peak of the velocity increases with the radius of curvature and the width of the channel for a constant pressure gradient. The velocity exhibited a declining trend due to an increase in the Casson fluid parameter. For a sufficiently large corrugation wavenumber, the flow rate decreases, and the phase difference becomes irrelevant. However, the reduction in flow can be minimized by decreasing the channel radius of curvature. In general, a smooth curved channel will give the maximum flow rate for a large corrugation wavenumber. The model can be used to simulate blood flow in arteries with varying geometries and magnetic fields, aiding in the study of cardiovascular diseases and the design of medical devices like stents.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3