Experimental Study on the Migration and Distribution of Microplastics in Desert Farmland Soil Under Drip Irrigation

Author:

Du Ao12,Hu Can12,Wang Xufeng12,Zhao Yachuan12,Xia Wenhao12,Dai Xianxing3,Wang Long12,Zhang Shufeng12

Affiliation:

1. College of Mechanical and Electronic Engineering Tarim University Alaer China

2. The Key Laboratory of Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region Alaer China

3. College of Agriculture Tarim University Alar China

Abstract

AbstractThe microplastics (MPs) formed by broken plastic film may migrate in the soil under drip irrigation. To investigate the migration distribution of MPs in desert farmland soil under drip irrigation conditions, our study was conducted on farmland in Xinjiang (China). A MP drip irrigation penetration migration testing device was set up in combination with Xinjiang farmland irrigation methods to conduct a migration simulation experiment. The results showed that the migration amount of MPs in soil was significantly positively correlated with the amount of drip irrigation, and significantly negatively correlated with the soil depth; in addition, the relationship between the migration amount of MPs in different types of soil was: clay < sandy loam < sandy soil. Under drip irrigation conditions, the migration rates of MPs were 30.51%, 19.41%, and 10.29% in sandy soil, sandy loam soil, and clay, respectively. The migration ability of these three particle sizes of polyethylene MPs in soil was ranked as follows: 25 to 147 μm > 0 to 25 μm > 147 to 250 μm. When the drip irrigation volume was 2.6 to 3.2 L, horizontal migration distances of MPs exceeded 5 cm, and vertical migration distances reached more than 30 cm. Our findings provide reference data for the study of soil MP migration. Environ Toxicol Chem 2024;43:1250–1259. © 2024 SETAC

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3