Facile synthesis of intrinsically flame‐retardant epoxy thermosets with high mechanical properties from lignin derivatives

Author:

Chen Jituo1,Zhang Yuxiang1,He Feng2,Ying Jun1,Li Shi‐Neng1,Peng Li34,Wu Qiang1,Fan Zhiqiang4,Jiang Baiyu1ORCID

Affiliation:

1. College of Chemistry and Materials Engineering Zhejiang A & F University Hangzhou People's Republic of China

2. Zhejiang Longsheng Chemical Research Institute Co., Ltd. Shaoxing People's Republic of China

3. ZJU‐Hangzhou Global Scientific and Technological Innovation Center, School of Micro‐Nano Electronics Zhejiang University Hangzhou People's Republic of China

4. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou People's Republic of China

Abstract

AbstractPreparing bio‐based epoxy resins with high performance is crucial to sustainable development. However, seeking renewable and flame‐retardant epoxy resins with high mechanical properties are still challenging. Here, we reported a facile way to transform lignin derivatives to intrinsic flame‐retardant epoxy resins with satisfactory mechanical properties. Two guaiacol‐based novolac epoxy resins (i.e., GTEP/DDM and GPEP/DDM) were prepared as alternatives for petroleum‐based DGEBA/DDM. The cured GTEP/DDM product showed a high Tg of 209.5°C, a high tensile modulus of 3.13 GPa, and a high LOI of 28.6% with UL‐94 V‐1 rating, which outperformed DGEBA/DDM system. Specially, GPEP/DDM resin possessed more superior mechanical properties (e.g., tensile strength of 73.9 MPa, and tensile modulus of 5.85 GPa) owing to additional interactions (i.e., π–π interactions and hydrogen bonds), and outstanding anti‐flammability (e.g., LOI of 31.2% with UL‐94 V‐0 rating) due to the endow of phosphorus‐containing groups. The mechanical reinforcement and flame‐retardant mechanisms were clarified based on structural evolution and performance variation. This work provides an efficient synthesis route to achieve a high‐performance thermoset, which is a promising alternative for substituting conventional bisphenol‐A epoxy resin for use as fireproof materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3