Affiliation:
1. College of Civil Aviation Nanjing University of Aeronautics and Astronautics Nanjing China
2. China Academy of Civil Aviation Science and Technology Beijing China
3. College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China
Abstract
AbstractMixed shock model is an explicit construction method of failure probability model based on component independent failure, system nonfatal shock, and fatal shock failure, which considers common cause failure (CCF) in redundant system. For aerospace systems, a modified mixed shock model is proposed, which considers several components may fail independently and simultaneously in operation. In order to solve the issue that the parameters of the mixed shock model cannot be solved directly based on the failure probability data, a parameter solving method based on particle swarm optimization (PSO) algorithm is proposed. Additionally, the relationship between the failure probability and the gradient of the parameter change is deduced, and the reduced‐order (RO) solution based on the gradient of the parameter change is proposed to improve the efficiency of the solution. A fitness function construction method based on the relative error of the solution probability and the true probability is proposed to improve the probability solution accuracy of multicomponent failure. The nonlinear inertia factor optimization method combined with fitness change is studied to improve the particle swarm dynamics. The accuracy of the results of different parameters solving sequence and different PSO methods are compared, and the effectiveness of the RO solution is verified. The results of the mixed shock model before and after modification are compared with the different CCF data, which verifies the effectiveness and wide applicability of the modified mixed shock model. The results show that the modified mixed shock model for CCF and its parameter solution method can significantly improve the probability solution accuracy of all components failure, and also provide a new theoretical basis and solution method for the quantitative analysis of multiredundant system failure.