Research and verification on parameter solution of mixed shock model for common cause failure based on particle swarm algorithm

Author:

Hu Yinxiao1ORCID,Ge Hongjuan1,He Pei2,Jin Hui1,Li Huang1,Zou Chunran3

Affiliation:

1. College of Civil Aviation Nanjing University of Aeronautics and Astronautics Nanjing China

2. China Academy of Civil Aviation Science and Technology Beijing China

3. College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China

Abstract

AbstractMixed shock model is an explicit construction method of failure probability model based on component independent failure, system nonfatal shock, and fatal shock failure, which considers common cause failure (CCF) in redundant system. For aerospace systems, a modified mixed shock model is proposed, which considers several components may fail independently and simultaneously in operation. In order to solve the issue that the parameters of the mixed shock model cannot be solved directly based on the failure probability data, a parameter solving method based on particle swarm optimization (PSO) algorithm is proposed. Additionally, the relationship between the failure probability and the gradient of the parameter change is deduced, and the reduced‐order (RO) solution based on the gradient of the parameter change is proposed to improve the efficiency of the solution. A fitness function construction method based on the relative error of the solution probability and the true probability is proposed to improve the probability solution accuracy of multicomponent failure. The nonlinear inertia factor optimization method combined with fitness change is studied to improve the particle swarm dynamics. The accuracy of the results of different parameters solving sequence and different PSO methods are compared, and the effectiveness of the RO solution is verified. The results of the mixed shock model before and after modification are compared with the different CCF data, which verifies the effectiveness and wide applicability of the modified mixed shock model. The results show that the modified mixed shock model for CCF and its parameter solution method can significantly improve the probability solution accuracy of all components failure, and also provide a new theoretical basis and solution method for the quantitative analysis of multiredundant system failure.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3