Emodin promotes the recovery of rheumatoid arthritis by regulating the crosstalk between macrophage subsets and synovial fibroblast subsets

Author:

Cheng Lianying1ORCID,Rong Xiaofeng1ORCID

Affiliation:

1. Department of Integrated Traditional Chinese and Western Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing China

Abstract

AbstractBackgroundTo study the relationships among emodin, synovial fibroblasts (FLSs), and macrophages (STMs) to provide guidance for the use of emodin in rheumatoid arthritis (RA) treatment.MethodsRA clinical samples from patients with different pathological processes were collected, and the correlations between the subsets of FLSs and STMs and pathological processes were analyzed via flow cytometry. In vitro experimental methods such as enzyme linked immunosorbent assay (ELISA), Western blotting, Transwell assays, CCK‐8 assays and cell coculture were used to assess cell proliferation, migration and secretion of inflammatory factors. A collagen‐induced arthritis mouse model was constructed to investigate the therapeutic potential of emodin in RA by flow cytometry, micro‐CT and staining.ResultsUnique subsets of FLSs and STMs, namely, FAPα+THY1 FLSs, FAPα+THY1+ FLSs, and MerTKposTREM2high STMs, were identified in synovial tissues from RA patients. The number of MerTKposTREM2high STMs was negatively correlated with the degree of damage in RA, while the number of FAPα+THY1 FLSs was positively correlated with damage. On the one hand, emodin promoted the aggregation of MerTKposTREM2high STMs. Moreover, MerTKposTREM2high STM‐mediated secretion of exosomes was promoted, which can inhibit the secretion of pro‐inflammatory factors by FAPα+THY1+ FLSs and promote the secretion of anti‐inflammatory factors by FAPα+THY1+ FLSs, thereby inhibiting FAPα+THY1FLS proliferation and migration, improving the local immune microenvironment, and inhibiting RA damage.ConclusionEmodin was shown to regulate the aggregation of STM subsets and exosome secretion, affecting the secretion, proliferation and migration of inflammatory factors in FLS subsets, and ultimately achieving good therapeutic efficacy in RA patients, suggesting that it has important clinical value.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3