Algebraic surrogate‐based process optimization using Bayesian symbolic learning

Author:

Forster Tim1ORCID,Vázquez Daniel1ORCID,Guillén‐Gosálbez Gonzalo1ORCID

Affiliation:

1. Department of Chemistry and Applied Biosciences Institute for Chemical and Bioengineering, ETH Zurich Zurich Switzerland

Abstract

AbstractHere, we propose a strategy for the global optimization of process flowsheets, a fundamental problem in process systems engineering, based on algebraic surrogates that are built from rigorous simulations via Bayesian symbolic regression. The applied method provides a closed‐form expression that can be optimized to global optimality using state‐of‐the‐art solvers, where BARON or ANTIGONE were the solvers of choice. When predicting unseen test data, the algebraic models show a similar accuracy level compared to traditional surrogates based on Gaussian processes. However, they can be more easily optimized to global optimality due to their analytical closed‐form structure, which allows the user to apply well‐established global deterministic solvers. We show the capabilities of our approach in several case studies, ranging from process units to full flowsheets. The performance of our approach is assessed by comparing the CPU time for model building, the prediction accuracy of the identified model, and the CPU time for the subsequent optimization with a proven benchmark.

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3