An inverse mapping approach for process systems engineering using automatic differentiation and the implicit function theorem

Author:

Alves Victor1,Kitchin John R.2ORCID,Lima Fernando V.1ORCID

Affiliation:

1. Department of Chemical and Biomedical Engineering West Virginia University Morgantown West Virginia USA

2. Department of Chemical Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA

Abstract

AbstractThe objective in this work is to propose a novel approach for solving inverse problems from the output space to the input space using automatic differentiation coupled with the implicit function theorem and a path integration scheme. A common way of solving inverse problems in process systems engineering (PSE) and in science, technology, engineering and mathematics (STEM) in general is using nonlinear programming (NLP) tools, which may become computationally expensive when both the underlying process model complexity and dimensionality increase. The proposed approach takes advantage of recent advances in robust automatic differentiation packages to calculate the input space region by integration of governing differential equations of a given process. Such calculations are performed based on an initial starting point from the output space and are capable of maintaining accuracy and reducing computational time when compared to using NLP‐based approaches to obtain the inverse mapping. Two nonlinear case studies, namely a continuous stirred tank reactor (CSTR) and a membrane reactor for conversion of natural gas to value‐added chemicals are addressed using the proposed approach and compared against: (i) extensive (brute‐force) search for forward mapping and (ii) using NLP solvers for obtaining the inverse mapping. The obtained results show that the novel approach is in agreement with the typical approaches, while computational time and complexity are considerably reduced, indicating that a new direction for solving inverse problems is developed in this work.

Funder

National Science Foundation

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3