Commercial‐scale removal of short‐chain PFAS in a batch‐wise adsorptive bubble separation process by dosing with cationic co‐surfactant

Author:

Stevenson Paul1,Karakashev Stoyan I.2

Affiliation:

1. Stevenson Process Technology Ltd. Cottingham UK

2. Department of Physical Chemistry Sofia University St. Kliment Ohridski Sofia Bulgaria

Abstract

AbstractStudies performed by Burns et al. in 2021 and 2022 demonstrated that a three‐stage batch‐wise adsorptive bubble separation process, surface active foam fractionation (SAFF), is effective at removing most per‐ and polyfluoroalkyl substances (PFASs) from contaminated groundwaters and landfill leachates. However, PFAS species with very low adsorption coefficients to bubble surfaces are difficult to remove, which is parallel to the difficulties in removing short‐chain PFAS in granulated activated carbon beds and other solid media. It is well known that the adsorption coefficient to bubble surfaces improves in the presence of electrolytes in solution and it has previously been shown that this improves the removal of PFAS. By developing a correlation for the removal percentage of one species or another of PFAS due to SAFF in commercial‐scale processes as a function of the adsorption coefficient, it is possible to generally estimate the removal percentage of any PFAS. The addition of a cationic co‐surfactant, cetrimonium bromide, to the feed can significantly further improve the adsorption coefficient and, as a consequence, materially improve the removal of short‐chain PFAS due to SAFF. A method for estimating this improved performance is in qualitative agreement with plant trials of SAFF at a North American site with a history of groundwater contamination due to the use of aqueous film forming foams firefighting foams, but the precise improvements appear to be dependent upon the concentration of the added co‐surfactant. The required concentration of co‐surfactant is significantly larger than might be expected on charge equivalence considerations, and this may be due to its consumption by other species in the feed, including PFAS that have not been accounted for. It is noted that the SAFF process may not be true foam fractionation and may, instead, be a bubble fractionator, both of which can be collectively described by the term “adsorptive bubble separation processes.”

Publisher

Wiley

Subject

Pollution,Waste Management and Disposal,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3