The role of ceria in promoting Ni catalysts supported on phosphate‐modified zirconia for the partial oxidation of methane

Author:

Abahussain Abdulaziz A. M.1,Al‐Fatesh Ahmed S.1ORCID,Vadodariya Dharmesh M.2,Abu‐Dahrieh Jehad K.3ORCID,Banabdwin Khaled M.1,Alarifi Naif4,Ibrahim Ahmed A.1,Fakeeha Anis H.1,Abasaeed Ahmed E.1,Kumar Rawesh2

Affiliation:

1. Department of Chemical Engineering, College of Engineering King Saud University Riyadh Saudi Arabia

2. Department of Chemistry Indus University Ahmedabad Gujarat India

3. School of Chemistry and Chemical Engineering Queen's University Belfast Belfast UK

4. Institute of Refining and Petrochemicals Technologies King Abdulaziz City for Science and Technology (KACST) Riyadh Saudi Arabia

Abstract

AbstractThe catalytic partial oxidation of methane (POM) is aimed at the mitigation of CH4 (a highly potent greenhouse gas) from the environment and the synthesis of syngas with a high H2/CO ratio. Herein, to enhance the POM reaction, Ni‐supported phosphate‐modified‐zirconia were synthesized with promotor “Ce” to achieve high H2/CO ratio (2.4–3.2). The catalysts were characterized by surface area and porosity, X‐ray diffraction, RAMAN, temperature‐programmed experiments (TPR, CO2‐TPD, and TPO), and TEM. Increasing the ceria addition over 10Ni/PO4 + ZrO2 resulted in lower crystallinity, higher dispersion of active sites, and enhanced the surface area of catalyst. The unique and prominent reducibility and basicity of NiO‐species and surface oxide ions, respectively, are particularly notable at 4 wt.% ceria loading. At a reaction temperature of 600°C, the highest concentration of active sites and a unique concentration of moderate strength basic sites can be achieved with 4 wt.% ceria loading over 10Ni/PO4 + ZrO2. This leads to 44% conversion of CH4, 36% yield of H2, 35% yield of CO2, and H2/CO ratio of 3.16 for the POM reaction. The cyclic H2TPR‐O2TPO‐H2TPR experiment confirms the reorganization of the active site towards high temperature under oxidizing gas O2 and reducing gas H2 gas stream during the POM reaction.

Funder

King Saud University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3