Employing deep learning in non‐parametric inverse visualization of elastic–plastic mechanisms in dual‐phase steels

Author:

Han Siyu1,Wang Chenchong1ORCID,Zhang Yu2,Xu Wei1,Di Hongshuang1

Affiliation:

1. State Key Laboratory of Rolling and Automation Northeastern University Shenyang Liaoning China

2. Ansteel Group Beijing Research Institute Beijing China

Abstract

AbstractEnhancing the interpretability of machine learning methods for predicting material properties is a key, yet complex topic in materials science. This study proposes an interpretable convolutional neural network (CNN) to establish the relationship between the microstructural evolution and mechanical properties of non‐uniform and nonlinear multisystem dual‐phase steel materials and achieve an inverse analysis of the elastic‐plastic mechanism. This study demonstrates that the developed CNN model achieves an accuracy of 94% in predicting the stress‐strain curves of dual‐phase steel microstructures with different compositions and processes, with the mean absolute error not exceeding 50 MPa, representing merely 5.26% of the average tensile strength of dual‐phase steels in the dataset. The reverse visualization results of the CNN model indicate that, during tensile deformation, the grain boundaries maintain deformation coordination within the grains by impeding dislocation slip. This results in a significant stress concentration at the grain boundaries, with stresses at the boundaries being higher than those borne by the martensitic phase and minimal stresses in the ferrite phase. Moreover, compared with traditional crystal plasticity models, the CNN model exhibits a substantial improvement in computational efficiency. This method provides a generic plan for improving the interpretability of machine learning methods for predicting material properties and can be easily applied to other alloy systems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3