Effect of improved electric field distribution on jet motion, fiber morphology, and properties of electrospun thermoplastic polyurethane fibrous membrane

Author:

Li Xiang1ORCID,Lou Liqin1

Affiliation:

1. Key Laboratory of Functional Fibers and Intelligent Textiles YuanPei College, Shaoxing University Shaoxing China

Abstract

AbstractElectric field plays a pivotal role in electrospinning to produce the desired micro and nanofibers, hence, a tricipital‐needle spinneret was developed to improve electric field distribution and productivity in this work. The effects of electric field distribution induced by spinneret configuration on jet motion, fiber morphology, and properties of electrospun TPU fibrous membrane at different applied voltages were investigated by simulation and experiment. The simulation results show that the designed tricipital‐needle spinneret weakens the electric field near the needle tip and strengthens the electric field in the whipping region in comparison to the single‐needle spinneret, exhibiting a relatively uniform electric field distribution. The experimental results demonstrate that the fiber diameter prepared by the tricipital‐needle spinneret at the corresponding voltage is smaller than that of the single‐needle spinneret due to the improved electric field distribution. Moreover, the fibrous membrane prepared by the tricipital‐needle spinneret shows excellent tensile properties (7 MPa tensile stress and 401% breaking elongation), air permeability (85.32 mm s−1) and water vapor permeability (6.7 kg m−2 d−1). Therefore, the electrospinning system with the tricipital‐needle spinneret not only increases the fiber productivity, but also improves the electric field distribution and endows the fibrous membrane with better properties, which can widen the applications of electrospun TPU fibrous membrane and also provides a new approach for the performance design of other electrospun fibers.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3