PhoenixMR: A GPU‐based MRI simulation framework with runtime‐dynamic code execution

Author:

Duncan‐Gelder Phillip12,O'Keeffe Darin12,Bones Phil1,Marsh Steven1

Affiliation:

1. University of Canterbury Christchurch New Zealand

2. Te Whatu Ora – Health New Zealand Wellington New Zealand

Abstract

AbstractBackgroundSimulations of physical processes and behavior can provide unique insights and understanding of real‐world problems. Magnetic Resonance Imaging (MRI) is an imaging technique with several components of complexity. Several of these components have been characterized and simulated in the past. However, several computational challenges prevent simulations from being simultaneously fast, flexible, and accurate.PurposeThe simulation of MRI experiments is underutilized by medical physicists and researchers using currently available simulators due to reasons including speed, accuracy, and extensibility constraints. This paper introduces an innovative MRI simulation engine and framework that aims to overcome these issues making available realistic and fast MRI simulation.MethodsUsing the CUDA C/C++ programing language, an MRI simulation engine (PhoenixMR), incorporating a Turing‐complete virtual machine (VM) to simulate abstract spatiotemporal complexities, was developed. This engine solves a set of time‐discrete Bloch equations using the symmetric operator splitting technique. An extensible front‐end framework package (written in Python) aids the use of PhoenixMR to simplify simulation development.ResultsThe PhoenixMR library and front‐end codes have been developed and tested. A set of example simulations were performed to demonstrate the ease of use and flexibility of simulation components such as geometrical setup, pulse sequence design, phantom design, and so forth. Initial validation of PhoenixMR is performed by comparing its accuracy and performance against a widely used MRI simulator using identical simulation parameters. Validation results show PhoenixMR simulations are three orders of magnitude faster. There is also strong agreement between models.ConclusionsA novel MRI simulation platform called PhoenixMR has been introduced. This research tool is designed to be usable by physicists and engineers interested in performing MRI simulations. Examples are shown demonstrating the accuracy, flexibility, and usability of PhoenixMR in several key areas of MRI simulation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3