A multiscale anisotropic polymer network model coupled with phase field fracture

Author:

Arunachala Prajwal Kammardi1ORCID,Abrari Vajari Sina1ORCID,Neuner Matthias2,Sim Jay Sejin3,Zhao Renee3,Linder Christian1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering Stanford University Stanford California USA

2. Unit of Strength of Materials and Structural Analysis University of Innsbruck Innsbruck Austria

3. Department of Mechanical Engineering Stanford University Stanford California USA

Abstract

AbstractThe study of polymers has continued to gain substantial attention due to their expanding range of applications, spanning essential engineering fields to emerging domains like stretchable electronics, soft robotics, and implantable sensors. These materials exhibit remarkable properties, primarily stemming from their intricate polymer chain network, which, in turn, increases the complexity of precisely modeling their behavior. Especially for modeling elastomers and their fracture behavior, accurately accounting for the deformations of the polymer chains is vital for predicting the rupture in highly stretched chains. Despite the importance, many robust multiscale continuum frameworks for modeling elastomer fracture tend to simplify network deformations by assuming uniform behavior among chains in all directions. Recognizing this limitation, our study proposes a multiscale fracture model that accounts for the anisotropic nature of elastomer network responses. At the microscale, damage in the chains is assumed to be driven by both the chain's entropy and the internal energy due to molecular bond distortions. In order to bridge the stretching in the chains to the macroscale deformation, we employ the maximal advance path constraint network model, inherently accommodating anisotropic network responses. As a result, chains oriented differently can be predicted to exhibit varying stretch and, consequently, different damage levels. To drive macroscale fracture based on damages in these chains, we utilize the micromorphic regularization theory, which involves the introduction of dual local‐global damage variables at the macroscale. The macroscale local damage variable is obtained through the homogenization of the chain damage values, resulting in the prediction of an isotropic material response. The macroscale global damage variable is subjected to nonlocal effects and boundary conditions in a thermodynamically consistent phase field continuum formulation. Moreover, the total dissipation in the system is considered to be mainly due to the breaking of the molecular bonds at the microscale. To validate our model, we employ the double‐edge notched tensile test as a benchmark, comparing simulation predictions with existing experimental data. Additionally, to enhance our understanding of the fracturing process, we conduct uniaxial tensile experiments on a square film made up of polydimethylsiloxane (PDMS) rubber embedded with a hole and notches and then compare our simulation predictions with the experimental observations. Furthermore, we visualize the evolution of stretch and damage values in chains oriented along different directions to assess the predictive capacity of the model. The results are also compared with another existing model to evaluate the utility of our model in accurately simulating the fracture behavior of rubber‐like materials.

Funder

National Science Foundation of Sri Lanka

U.S. Department of Energy

National Nuclear Security Administration

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3