Influence of SiC nanoparticles on properties of alkali‐treated areca fruit husk fiber/hybrid polymer composites

Author:

Brailson Mansingh Bright1,Binoj Joseph Selvi2ORCID,Amala Mithin Minther Singh Amirthaiah3,Sagai Francis Britto Antony4

Affiliation:

1. Department of Mechanical Engineering Sri Ramakrishna Engineering College Coimbatore Tamilnadu India

2. Institute of Mechanical Engineering, Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences (SIMATS) Chennai Tamilnadu India

3. Department of Mechanical Engineering DMI College of Engineering Chennai Tamilnadu India

4. Department of Mechanical Engineering Rohini College of Engineering & Technology Palkulam Tamil Nadu India

Abstract

AbstractThis work presents the comprehensive characterization of alkali treated areca fruit husk fiber (AAFHF) an industrial agro‐waste reinforced unsaturated polyester resin (UPR) matrix hybrid composite with silicon carbide (SiC) nanoparticles as filler material. Hybrid composite plates were fabricated with 40 wt% of AAFHF and diverse wt% of SiC nanoparticles ranging from 1 to 4 wt% in steps of 1 wt%. The effect of wt% of SiC nanoparticles in hybrid composite over mechanical, morphological, wear, thermal and water absorption characteristics was investigated. The findings help to conclude that a hybrid composite plate with 3 wt% filler content excels in overall properties. Meanwhile, the accumulation and meager scattering of SiC nanoparticles in composite deteriorated the functional characteristics when the wt% of filler content enhanced to 4 wt%. Also, the failure pattern and interaction between AAFHF, SiC nanoparticle and UPR were understood from the images obtained using Scanning Electron Microscopy (SEM). In addition, the availability of functional groups, crystallite size and crystallinity index was obtained from Fourier transform infrared (FTIR) spectrum and X‐ray diffraction (XRD) analysis for the optimum filler content respectively. Moreover, the achieved results suggest the suitability of the developed composite for marine and lightweight applications.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3