Effect of choosing coordinate systems on computationally predicting nonradiative transition rates of flexible thermally activated delayed fluorescence molecules

Author:

Min Byeong Ki1ORCID,Kim Donggeon2ORCID,Kim Dongwook2ORCID,Rhee Young Min1ORCID

Affiliation:

1. Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea

2. Department of Chemistry Kyonggi University Suwon Korea

Abstract

AbstractUnderstanding nonradiative transition mechanisms is important in various situations. However, compared with radiative processes where temporal profiles of photon emission can be monitored in a straightforward manner, experimentally accessing the rate information may not be an easy task with nonradiative transitions. Hence, applying theoretical tools toward predicting the rates can be a useful tactic. Such predictions become very useful in designing optoelectronic materials as in the molecules adopted for constructing organic light‐emitting diodes (OLEDs). The correlation function formalism is a method that can fulfill the purpose of designing OLED materials. The formalism requires information regarding the vibrational normal modes of the two electronic states before and after the transition. Because the method is also based on harmonic oscillator approximation, it can actually fail to provide high reliability when there is a large geometric distortion between the initial and the final states. In fact, the harmonic normal mode picture is more prone to lose reliability in the Cartesian coordinates than in the internal ones even at a small distortion, and hence adopting internal coordinates may be more preferable for practical calculations. This is because normal mode mixing becomes less severe when molecular coordinates are described with internal degrees of freedom such as bond stretching, bending, and torsion. In this regard, how much more reliable the nonradiative rate predictions in OLED materials become with the use of internal coordinate system deserves a close inspection. In this account, we review on the derivation of the correlation function formalism and provide how it can be adapted toward the use of the internal coordinates. As a demonstration, we evaluate the intersystem crossing and the internal conversion rates of a series of thermally activated delayed fluorescence (TADF) molecules with both Cartesian and internal coordinate systems. Overall, handling transitions involving substantial structural changes is improved indeed with the internal coordinates. However, limitations are still apparent for the TADF systems with a flexible donor–acceptor type construct especially when the inevitable inter‐domain twisting takes place with the electronic transition. Future prospect for handling the issue is commented as a concluding remark.

Funder

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3