Toward rapid and sensitive point‐of‐care diagnosis with surface‐enhanced Raman scattering‐based optofluidic systems

Author:

Joung Younju1,Park Sohyun1,Kang Binnam1,Choo Jaebum1

Affiliation:

1. Department of Chemistry Chung‐Ang University Seoul South Korea

Abstract

AbstractWith the recent global outbreaks of infectious diseases such as coronavirus disease 2019, developing a detection system capable of quickly and accurately diagnosing diseases on‐site has become a pressing need. The ability to diagnose patients in the field is crucial for the prompt isolation and treatment of infected individuals and the prevention of the spread of the disease. Our research group has recently developed a surface‐enhanced Raman scattering optofluidic system that enables rapid and accurate point‐of‐care diagnostics. This account will introduce the principle and configuration of the fluidic devices, such as lateral flow assay strips or microfluidic channels, and the portable Raman spectrometer. We will also highlight the challenges that must be addressed for using this system in clinical settings. Rapid and accurate diagnosis is critical for effective disease management and control, and developing this system can significantly improve our ability to respond to outbreaks of infectious diseases.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3