Dynamic smooth and stable obstacle avoidance for unmanned aerial vehicle based on collision prediction

Author:

Ma Haixu12ORCID,Cai Zixuan12,Xu Guoan3,Yang Guang12ORCID,Chen Guanyu12

Affiliation:

1. College of Instrumentation & Electrical Engineering Jilin University Changchun China

2. Jilin Provincial Key Laboratory of Trace Analysis Technology and Instruments Changchun China

3. Shenzhen Government Investment Project Evaluation Center Shenzhen China

Abstract

AbstractAutonomous dynamic obstacle avoidance of unmanned aerial vehicles (UAVs) based on collision prediction is critical for stable flight missions. UAVs must deal with high‐speed and nonlinearly moving obstacles that obey nonlinear dynamics, which are one of the numerous objects affecting stable flight. To satisfy the requirements of smooth flight and attitude stability, a novel dynamic smooth obstacle avoidance (QVA) method based on obstacle trajectory prediction is proposed. To predict the dynamic obstacle trajectories, a trajectory prediction (QLTP) method using a quasi‐linear parameter varying representations is proposed. The proposed QVA integrates the QLTP approach, velocity obstacle (VO) approach, and artificial potential field (APF) methods. The QVA detects an imminent collision based on the QLTP method, and then replans the UAV path based on the VO method at the time of the predicted collision. The UAV tracks planned waypoints for collision avoidance. To ensure the flight safety of the UAV, a virtual APF is constructed with waypoints as local targets and obstacles. The simulation results show that the proposed method performs better than the improved APF and VO methods in terms of the smoothness of the obstacle avoidance path and the stability of the UAV attitude.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,Control and Optimization,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3