Prey size and ecological separation in spinosaurid theropods based on heterodonty and rostrum shape

Author:

D'Amore Domenic C.1ORCID,Johnson‐Ransom Evan2ORCID,Snively Eric3,Hone David W. E.4

Affiliation:

1. Department of Natural Sciences Daemen University Amherst New York USA

2. Department of Organismal Biology and Anatomy University of Chicago Chicago Illinois USA

3. Oklahoma State University College of Osteopathic Medicine–Cherokee Nation Tahlequah Oklahoma USA

4. School of Biological and Behavioural Sciences Queen Mary University of London London UK

Abstract

AbstractMembers of the dinosaur clade Spinosauridae had numerous traits attributed to feeding in or around water, and their feeding apparatus has often been considered analogous to modern crocodylians. Here we quantify the craniodental morphology of Spinosauridae and compare it to modern Crocodylia. We measured from spinosaurid and crocodylian skeletal material the area of alveoli as a proxy for tooth size to determine size‐heterodonty. Geometric morphometrics were also conducted on tooth crowns and tooth bearing regions of the skull. Spinosaurids overall had relatively large alveoli, and both they, and crocodylians, had isolated regions of enlarged alveoli. Spinosaurines also had enlarged alveoli along the caudal dentary that baryonychines lacked, which instead had numerous additional caudal tooth positions. Size‐heterodonty was positively allometric, and spinosaurids overlapped with generalist/macro‐generalist crocodylians of similar sizes. Spinosaurid crown shape morphologies overlapped with certain slender‐longirostrine crocodylians, yet lacked molariform distal crowns typical of most crocodylians. Spinosaurid rostra and mandibles were relatively deep with undulating margins correlating with local tooth sizes, which may indicate a developmental constraint. Spinosaurines had a particularly long concavity caudal to their rosette of anterior cranial teeth, with a corresponding bulbous rostral dentary. The spinosaurid feeding apparatus was well suited for quickly striking and creating deep punctures, but not cutting flesh or durophagy. The jaws interlocked to secure prey and move it deeper into the mouth. The baryonychines probably did little oral processing, yet spinosaurines could have processed relatively large vertebrates. Overall, there is no indication that spinosaurids were restricted to fish or small aquatic prey.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3