On the well-posedness for Keller-Segel system with fractional diffusion
Author:
Affiliation:
1. Institute of Applied Mathematics, Academy of Mathematics and Systems Science; Chinese Academy of Sciences; Beijing 100190 China
2. The Graduate School of China Academy of Engineering Physics; P.O. Box 2101 Beijing China 100088
Funder
Chinese Postdoctoral Science Foundation
Publisher
Wiley
Subject
General Engineering,General Mathematics
Link
http://onlinelibrary.wiley.com/wol1/doi/10.1002/mma.1480/fullpdf
Reference15 articles.
1. Global well-posedness for Keller-Segel system in Besov type spaces;Iwabuchi;Journal of Mathematical Analysis and Applications,2011
2. Global and exploding solutions for nonlocal quadratic evolution problems;Biler;SIAM Journal on Applied Mathematics,1998
3. The parabolic-parabolic Keller-Segel model in ℝ2;Calvez;Communications in Mathematical Sciences,2008
4. Local and global solvability of parabolic systems modelling chemotaxis;Biler;Advances in Mathematical Sciences and Applications,1998
5. Self-similar solutions to a parabolic system modeling chemotaxis;Naito;Journal of Differential Equations,2002
Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the fractional heat semigroup and product estimates in Besov spaces and applications in theoretical analysis of the fractional Keller–Segel system;Boletín de la Sociedad Matemática Mexicana;2024-08-31
2. Well-posedness of Cauchy problem of fractional drift diffusion system in non-critical spaces with power-law nonlinearity;Advances in Nonlinear Analysis;2024-01-01
3. A Fractional Chemotaxis Navier–Stokes System with Matrix-Valued Sensitivities and Attractive–Repulsive Signals;Fractal and Fractional;2023-02-22
4. Large time behavior of classical solutions to a fractional attraction–repulsion Keller–Segel system in the whole space;Mathematical Methods in the Applied Sciences;2022-07-20
5. Persistence phenomena of classical solutions to a fractional Keller–Segel model with time‐space dependent logistic source;Mathematical Methods in the Applied Sciences;2022-06-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3