Improving the Performance of Machining Parameters in the Turning Process of Inconel 686 by Using Cryo‐MQL Method

Author:

Tazehkandi Ahmadreza Hosseini1ORCID,Shabgard Mohammadreza1,Tutunchi Abolfazl1

Affiliation:

1. Department of Manufacturing Engineering, Faculty of Mechanical Engineering University of Tabriz Tabriz Iran

Abstract

ABSTRACTRegarding its wide range of applications in different industries, such as oil and gas, and for manufacturing equipment used to control pollution and recycle industrial wastes, Inconel 686 turning process is highly important. The alloy is highly resistant to high temperatures and corrosion, and thus it can preserve its properties at high temperatures. Due to its low heat transfer coefficient and work hardening during operation, Inconel 686 is considered a difficult‐to‐cut material, and hence, turning Inconel 686 is challenged with major limitations regarding input parameter level and cutting fluid and issues such as reduced surface quality. The input parameter level and cutting fluid limitations might severely harm the environment and humans, decrease the machining efficiency and keep cleaner production goals out of reach. Novel cooling methods such as cryo‐MQL can contribute to achieving cleaner production goals. Cooling methods improve the machining performance and prohibit any damage to the surface integrity. In this study, cryo‐MQL, along with carbide‐coated tools and biodegradable vegetable oil, was adopted. The efficiency and success rate of cryo‐MQL were evaluated by comparing the results with those of MQL and wet methods. A wide range of output parameters, such as residual stresses, cutting zone temperature, cutting forces, tool wear, surface smoothness, surface defects and micro‐hardness, were assessed by changing the cutting speed and feed rate. The results indicated that cryo‐MQL could reduce the cutting forces, tool wear rate, cutting zone temperature and residual stresses while improving the surface quality. Moreover, environmental concerns were completely dealt with. Due to the increased possibility of higher input parameter levels, the time and cost of the cutting process were significantly reduced.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3