Overcrowding and separation estimates for the Coulomb gas

Author:

Thoma Eric1

Affiliation:

1. Department of Mathematics Stanford University Stanford California USA

Abstract

AbstractWe prove several results for the Coulomb gas in any dimension that follow from isotropic averaging, a transport method based on Newton's theorem. First, we prove a high‐density Jancovici–Lebowitz–Manificat law, extending the microscopic density bounds of Armstrong and Serfaty and establishing strictly sub‐Gaussian tails for charge excess in dimension 2. The existence of microscopic limiting point processes is proved at the edge of the droplet. Next, we prove optimal upper bounds on the k‐point correlation function for merging points, including a Wegner estimate for the Coulomb gas for . We prove the tightness of the properly rescaled kth minimal particle gap, identifying the correct order in and a three term expansion in , as well as upper and lower tail estimates. In particular, we extend the two‐dimensional “perfect‐freezing regime” identified by Ameur and Romero to higher dimensions. Finally, we give positive charge discrepancy bounds which are state of the art near the droplet boundary and prove incompressibility of Laughlin states in the fractional quantum Hall effect, starting at large microscopic scales. Using rigidity for fluctuations of smooth linear statistics, we show how to upgrade positive discrepancy bounds to estimates on the absolute discrepancy in certain regions.

Funder

National Science Foundation

Publisher

Wiley

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3