Quantitative homogenization of principal Dirichlet eigenvalue shape optimizers

Author:

Feldman William M.1

Affiliation:

1. Department of Mathematics University of Utah Salt Lake City USA

Abstract

AbstractWe apply new results on free boundary regularity to obtain a quantitative convergence rate for the shape optimizers of the first Dirichlet eigenvalue in periodic homogenization. We obtain a linear (with logarithmic factors) convergence rate for the optimizing eigenvalue. Large scale Lipschitz free boundary regularity of almost minimizers is used to apply the optimal L2 homogenization theory in Lipschitz domains of Kenig et al. A key idea, to deal with the hard constraint on the volume, is a combination of a large scale almost dilation invariance with a selection principle argument.

Funder

National Science Foundation

Publisher

Wiley

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. G.AleksanyanandT.Kuusi Quantitative homogenization for the obstacle problem and its free boundary arXiv 2021.

2. Existence and regularity for a minimum problem with free boundary;Alt H. W.;J. Reine Angew. Math.,1981

3. Quantitative Stochastic Homogenization and Large-Scale Regularity

4. Quantitative

5. Compactness methods in the theory of homogenization

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Domains for Elliptic Eigenvalue Problems with Rough Coefficients;SIAM Journal on Mathematical Analysis;2024-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3