Bi@C nanosphere anode with Na+‐ether‐solvent cointercalation behavior to achieve fast sodium storage under extreme low temperatures

Author:

Liu Lingli12ORCID,Li Siqi12,Hu Lei12,Liang Xin12ORCID,Yang Wei1ORCID,Yang Xulai23,Hu Kunhong1,Hou Chaofeng4,Han Yongsheng4,Chou Shulei5

Affiliation:

1. School of Energy, Materials and Chemical Engineering Hefei University Hefei China

2. LIB Technology Center of Anhui Province Hefei University Hefei China

3. School of Advanced Manufacturing Engineering Hefei University Hefei China

4. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China

5. Institute for Carbon Neutralization, College of Chemistry and Materials Engineering Wenzhou University Wenzhou China

Abstract

AbstractThe low ion transport is a major obstacle for low‐temperature (LT) sodium‐ion batteries (SIBs). Herein, a core‐shell structure of bismuth (Bi) nanospheres coated with carbon (Bi@C) is constructed by utilizing a novel Bi‐based complex (1,4,5,8‐naphthalenetetracarboxylic dianhydride as the ligand) as the precursor, which provides an effective template to fabricate Bi‐based anodes. At −40°C, the Bi@C anode achieves a high capacity, which is equivalent to 96% of that at 25°C, benefitting from the core‐shell nanostructured engineering and Na+‐ether‐solvent cointercalation process. The special Na+‐diglyme cointercalation behavior may effectively reduce the activation energy and accelerate the Na+ diffusion kinetics, enabling the excellent low‐temperature performance of the Bi@C electrode. As expected, the fabricated Na3V2(PO4)3//Bi@C full‐cell delivers impressive rechargeability in the ether‐based electrolyte at −40°C. Density functional theory calculations and electrochemical tests also reveal the fast reaction kinetic mechanism at LT, thanks to a much lower diffusion energy barrier (167 meV) and a lower reaction activation energy (32.2 kJ mol−1) of Bi@C anode in comparison with that of bulk Bi. This work provides a rational design of Bi‐based electrodes for rechargeable SIBs under extreme conditions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

University Natural Science Research Project of Anhui Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3