The role of genetic diversity and pre‐breeding traits to improve drought and heat tolerance of bread wheat at the reproductive stage

Author:

Shokat Sajid12ORCID,Großkinsky Dominik K.3ORCID,Singh Sukhwinder4ORCID,Liu Fulai1ORCID

Affiliation:

1. Crop Science, Department of Plant and Environmental Sciences University of Copenhagen Taastrup Denmark

2. Wheat Breeding Group, Plant Breeding and Genetics Division Nuclear Institute for Agriculture and Biology Faisalabad Pakistan

3. Bioresources Unit Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH Tulln Austria

4. Subtropical Horticultural Research Station USDA‐ARS, Miami Coral Gables Florida USA

Abstract

AbstractExtreme weather including heat waves and drought episodes are expected to increase in intensity and duration due to climate change. Wheat, being a major crop is under extreme threat to these stresses especially at the reproductive stage. This review addresses the potential of diverse wheat germplasm (originated from landraces and synthetic derivatives) to cope with drought and heat stress at the flowering stage. Here, important marker‐trait associations were reported for sustainable grain production under drought and heat stress at anthesis. Likewise, the mechanisms of drought and heat resilience including gene expression and physiological traits (activities of carbohydrate metabolic and antioxidant enzymes, and endogenous hormonal responses) were explored. These studies helped to understand the genetic and physiological basis of drought and heat tolerance and certain pre‐breeding traits related to osmotic adjustment, phytohormonal regulation, antioxidant metabolism, and the expression of novel genes were identified. Moreover, identified pre‐breeding traits and genotypes can be utilized in breeding wheat cultivars resilient to future adverse environments.

Funder

Islamic Development Bank

Publisher

Wiley

Subject

Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3