Exploring the inhibition of the soluble lytic transglycosylase Cj0843c of Campylobacter jejuni via targeting different sites with different scaffolds

Author:

Kumar Vijay1,Boorman Jacob1,Greenlee William J.2,Zeng Ximin3,Lin Jun3,van den Akker Focco1

Affiliation:

1. Department of Biochemistry Case Western Reserve University Cleveland Ohio USA

2. MedChem Discovery Consulting, LLC Teaneck New Jersey USA

3. Department of Animal Science University of Tennessee Knoxville Tennessee USA

Abstract

AbstractBacterial lytic transglycosylases (LTs) contribute to peptidoglycan cell wall metabolism and are potential drug targets to potentiate β‐lactam antibiotics to overcome antibiotic resistance. Since LT inhibitor development is underexplored, we probed 15 N‐acetyl‐containing heterocycles in a structure‐guided fashion for their ability to inhibit and bind to the Campylobacter jejuni LT Cj0843c. Ten GlcNAc analogs were synthesized with substitutions at the C1 position, with two having an additional modification at the C4 or C6 position. Most of the compounds showed weak inhibition of Cj0843c activity. Compounds with alterations at the C4 position, replacing the ‐OH with a ‐NH2, and C6 position, the addition of a ‐CH3, yielded improved inhibitory efficacy. All 10 GlcNAc analogs were crystallographically analyzed via soaking experiments using Cj0843c crystals and found to bind to the +1 +2 saccharide subsites with one of them additionally binding to the −2 −1 subsite region. We also probed other N‐acetyl‐containing heterocycles and found that sialidase inhibitors N‐acetyl‐2,3‐dehydro‐2‐deoxyneuraminic acid and siastatin B inhibited Cj0843c weakly and crystallographically bound to the −2 −1 subsites. Analogs of the former also showed inhibition and crystallographic binding and included zanamivir amine. This latter set of heterocycles positioned their N‐acetyl group in the −2 subsite with additional moieties interacting in the −1 subsite. Overall, these results could provide novel opportunities for LT inhibition via exploring different subsites and novel scaffolds. The results also increased our mechanistic understanding of Cj0843c regarding peptidoglycan GlcNAc subsite binding preferences and ligand‐dependent modulation of the protonation state of the catalytic E390.

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3