DFT‐based systematic study on the structural, optoelectronic, thermodynamic, vibrational, and mechanical behavior of Ruddlesden Popper perovskites Sr2XO4 (X = Zr, Hf) for optoelectronic applications

Author:

Khalil R. M. Arif1,Hussain Muhammad Iqbal12ORCID,Karim Bushra1,Albalawi Hind3,Hussein Khaild I.4,Hussain Fayyaz1

Affiliation:

1. Materials Simulation Research Laboratory (MSRL) Institute of Physics, Bahauddin Zakariya University Multan Pakistan

2. Department of Physics University of Education Lahore Pakistan

3. Department of Physics, College of Sciences Princess Nourah bint Abdulrahman University (PNU) Riyadh Saudi Arabia

4. Department of Radiological Sciences, College of Applied Medical Sciences King Khalid University Abha Saudi Arabia

Abstract

AbstractDFT study on the structural, optoelectronic, thermodynamic, vibrational, and mechanical properties of Ruddlesden Popper (RP) perovskites Sr2XO4 (X = Zr, Hf) is made with the help of first principle simulation in the framework of WIEN2K code. The lattice constants in bohr unit are found to be for Sr2ZrO4, and for Sr2HfO4. The calculated band gap values are 2.65 eV for Sr2ZrO4 and 2.58 eV for Sr2HfO4. The band structure and electronic density of states reveal the semiconductor nature of these materials having an indirect band gap. Also, Kramers–Krönig relations are used for optical analysis which unveils that these compounds are suitable for applications in optoelectronic. The vibrational investigations are done while using harmonic approximation. Phonon dispersion curves are plotted to observe the vibrational modes by DFPT to confirm the dynamical stability of studied compounds. Although few soft modes have appeared, however, these compounds are found to be thermally stable. Raman modes appeared at low and high frequencies whereas IR modes are noticed at intermediate frequencies for considered compounds. Upon thermodynamical examination, the maximum value of free energy at 1000 K is noted to be −1.95 eV for Sr2ZrO4 and −2.25 eV for Sr2HfO4. The elastic constants are calculated by using the Voigt–Reuss–Hill approximation. The calculated anisotropic values for these compounds are 1.077 (A) and 0.913 (A) which indicate that Sr2ZrO4 has isotropic behavior and Sr2HfO4 has anisotropic behavior. From our calculations, Voigt Young's modulus of Sr2ZrO4 and Sr2HfO4 is 266.99 (GPa) and 279.42 (GPa) along with Poison's ratio of 0.29 and 0.26, respectively.

Funder

Deanship of Scientific Research, King Khalid University

Deanship of Scientific Research, Princess Nourah Bint Abdulrahman University

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3