Affiliation:
1. Department of Chemistry Johns Hopkins University Baltimore Maryland USA
2. Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
Abstract
AbstractPhotoresponsive conjugated polymers are a promising target for modern organic electronics. Numerous photoswitchable repeat units have been included covalently within polymeric structures to enable responsive chromic materials, most commonly through side‐chain appendages or through formal conjugation along a π‐conjugated backbone. We recently disclosed a new design whereby the photoswitch elements are cross conjugated to a conjugated polymer main chain. In this case, we found that the extent of photoconversion was dictated in part by competitive main chain light absorption, which could be suppressed by using a photoswitching motif that carried most of the frontier molecular orbital densities. Here, we report the modeling and synthesis of a series of thieno[3,4‐b]thiophene (TT)‐based photochromes with various aromatic flankers imparting varying degrees of steric bulk and π‐conjugation in order to elucidate the balancing act between steric and electronic factors to promote photochromism. These model systems provide a better understanding of the behavior of photochromic units within extended oligomeric and polymeric π‐conjugated materials.
Funder
National Science Foundation