Limited Endothelial Plasticity of Mesenchymal Stem Cells Revealed by Quantitative Phenotypic Comparisons to Representative Endothelial Cell Controls

Author:

Antonyshyn Jeremy A.12,McFadden Meghan J.12,Gramolini Anthony O.23,Hofer Stefan O.P.45,Santerre J. Paul126

Affiliation:

1. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada

2. Translational Biology and Engineering Program Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada

3. Department of Physiology University of Toronto, Toronto, Ontario, Canada

4. Department of Surgery, Division of Plastic and Reconstructive Surgery University of Toronto, Toronto, Ontario, Canada

5. Departments of Surgery and Surgical Oncology University Health Network, Toronto, Ontario, Canada

6. Faculty of Dentistry University of Toronto, Toronto, Ontario, Canada

Abstract

Abstract Considerable effort has been directed toward deriving endothelial cells (ECs) from adipose-derived mesenchymal stem cells (ASCs) since 2004, when it was first suggested that ECs and adipocytes share a common progenitor. While the capacity of ASCs to express endothelial markers has been repeatedly demonstrated, none constitute conclusive evidence of an endothelial phenotype as all reported markers have been detected in other, non-endothelial cell types. In this study, quantitative phenotypic comparisons to representative EC controls were used to determine the extent of endothelial differentiation being achieved with ASCs. ASCs were harvested from human subcutaneous abdominal white adipose tissue, and their endothelial differentiation was induced using well-established biochemical stimuli. Reverse transcription quantitative real-time polymerase chain reaction and parallel reaction monitoring mass spectrometry were used to quantify their expression of endothelial genes and corresponding proteins, respectively. Flow cytometry was used to quantitatively assess their uptake of acetylated low-density lipoprotein (AcLDL). Human umbilical vein, coronary artery, and dermal microvascular ECs were used as positive controls to reflect the phenotypic heterogeneity between ECs derived from different vascular beds. Biochemically conditioned ASCs were found to upregulate their expression of endothelial genes and proteins, as well as AcLDL uptake, but their abundance remained orders of magnitude lower than that observed in the EC controls despite their global proteomic heterogeneity. The findings of this investigation demonstrate the strikingly limited extent of endothelial differentiation being achieved with ASCs using well-established biochemical stimuli, and underscore the importance of quantitative phenotypic comparisons to representative primary cell controls in studies of differentiation. Stem Cells Translational Medicine  2019;8:35–45

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3