Affiliation:
1. Division of Experimental Hematology and Cancer Biology Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
2. Hoxworth Blood Center University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
Abstract
Abstract
Bacterial and fungal infections are a major cause of morbidity and mortality in neutropenic patients. Donor-derived neutrophil transfusions have been used for prophylaxis or treatment for infection in neutropenic patients. However, the short half-life and the limited availability of large numbers of donor-derived neutrophils for transfusion remain a significant hurdle in the implementation of neutrophil transfusion therapy. Here, we investigate the in vitro and in vivo activity of neutrophils generated from human induced pluripotent stem cells (iPSC), a potentially unlimited resource to produce neutrophils for transfusion. Phenotypic analysis of iPSC-derived neutrophils reveal reactive oxygen species production at similar or slightly higher than normal peripheral blood neutrophils, but have an ∼50%–70% reduced Escherichia coli phagocytosis and phorbol 12-myristate 13-acetate induced formation of neutrophil extracellular traps (NET). Signaling of granulocytic precursors identified impaired AKT activation, but not ERK or STAT3, in agonist-stimulated iPSC-derived neutrophils. Expression of a constitutively activated AKT in iPSC-derived neutrophils restores most phagocytic activity and NET formation. In a model of bacterial induced peritonitis in immunodeficient mice, iPSC-derived neutrophils, with or without corrected AKT activation, migrate similarly to the peritoneal fluid as peripheral blood neutrophils, whereas the expression of activated AKT significantly improves their phagocytic activity in vivo. Stem Cells Translational Medicine 2019;8:557–567
Funder
NIH/NIGMS
National Institutes of Health
National Institute of General Medical Sciences
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Developmental Biology,General Medicine
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献