Dynamically frequency‐tunable and environmentally stable microwave absorbers

Author:

Liu Xiao123,Wu Lihong123,Liu Jun123,Lv Haiming123,Mou Pengpeng12,Shi Shaohua12,Yu Lei123,Wan Gengping12,Wang Guizhen123ORCID

Affiliation:

1. Key Laboratory of Pico Electron Microscopy of Hainan Province, Center for Advanced Studies in Precision Instruments Hainan University Haikou Hainan China

2. Center for New Pharmaceutical Development and Testing of Haikou Center for Advanced Studies in Precision Instruments Haikou Hainan China

3. State Key Laboratory of Marine Resource Utilization in South China Sea, School of Material Science and Engineering Hainan University Haikou Hainan China

Abstract

AbstractThe threat to information security from electromagnetic pollution has sparked widespread interest in the development of microwave absorption materials (MAMs). Although considerable progress has been made in high‐performance MAMs, little attention was paid to their absorption frequency regulation to respond to variable input frequencies and their stability and durability to cope with complex environments. Here, a highly compressible polyimide‐packaging carbon nanocoils/carbon foam (PI@CNCs/CF) fabricated by a facile vacuum impregnation method is reported to be used as a dynamically frequency‐tunable and environmentally stable microwave absorber. PI@CNCs/CF exhibits good structural stability and mechanical properties, which allows precise absorption frequency tuning by simply changing its compression ratio. For the first time, the tunable effective absorption bandwidth can cover the whole test frequency band (2−18 GHz) with the broadest effective absorption bandwidth of 10.8 GHz and the minimum reflection loss of −60.5 dB. Moreover, PI@CNCs/CF possesses excellent heat insulation, infrared stealth, self‐cleaning, flame retardant, and acid‐alkali corrosion resistance, which endows it high reliability even under various harsh environments and repeated compression testing. The frequency‐tunable mechanism is elucidated by combining experiment and simulation results, possibly guiding in designing dynamically frequency‐tunable MAMs with good environmental stability in the future.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3