Machine learning‐assisted search for novel coagulants: When machine learning can be efficient even if data availability is low

Author:

Rovenchak Andrij12ORCID,Druchok Maksym13ORCID

Affiliation:

1. SoftServe, Inc. Lviv Ukraine

2. Professor Ivan Vakarchuk Department for Theoretical Physics Ivan Franko National University of Lviv Lviv Ukraine

3. Institute for Condensed Matter Physics Lviv Ukraine

Abstract

AbstractDesign of new drugs is a challenging process: a candidate molecule should satisfy multiple conditions to act properly and make the least side‐effect—perfect candidates selectively attach to and influence only targets, leaving off‐targets intact. The amount of experimental data about various properties of molecules constantly grows, promoting data‐driven approaches. However, the applicability of typical predictive machine learning techniques can be substantially limited by a lack of experimental data about a particular target. For example, there are many known Thrombin inhibitors (acting as anticoagulants), but a very limited number of known Protein C inhibitors (coagulants). In this study, we present our approach to suggest new inhibitor candidates by building an effective representation of chemical space. For this aim, we developed a deep learning model—autoencoder, trained on a large set of molecules in the SMILES format to map the chemical space. Further, we applied different sampling strategies to generate novel coagulant candidates. Symmetrically, we tested our approach on anticoagulant candidates, where we were able to predict their inhibition towards Thrombin. We also compare our approach with MegaMolBART—another deep learning generative model, but exploiting similar principles of navigation in a chemical space.

Publisher

Wiley

Subject

Computational Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3