The passive avoidance task ameliorate the toxic effects of bisphenol A on dopamine D1 receptor density in hippocampus, amygdala, and cerebellum of male rats

Author:

Taherianfard* Mahnaz1ORCID,Ahmadijokani Saiedeh1

Affiliation:

1. Physiology Division of Basic Science Department, School of Veterinary Medicine Shiraz University Shiraz Iran

Abstract

AbstractIntroductionDopamine D1 receptor seems to play a role in mediating plasticity. Therefore, the present study aimed to investigate the effects of passive avoidance tasks postexposed to BPA on dopamine D1 receptor density in the hippocampus, amygdala, and cerebellum of male rats.MethodsThirty‐five male Sprague–Dawley rats weighing 220.300 g, in standard light‐dark 12 h light/12 h dark were used in the present study; water and food were ad libitum. Animals were divided into six groups. Administration of BPA 5 and 50 mg/kg/day were gavaged for 15 days. Learning and memory assessment were done by a shuttle box after 15 days of BPA administration. The density of the dopamine D1 receptor was investigated using an immunohistochemistry (IH) procedure. For determining the color difference in IH sections, Image Analyzer software was used. The data were analyzed by one‐way ANOVA followed by Tukey's as a post hoc test.ResultsThe data showed that BPA in both doses could significantly increase the density of dopamine D1 receptors in the hippocampus, amygdala, and cerebellum of male rats; learning in rats postexposed to BPA improves dopamine D1 receptor density significantly in three brain structures.DiscussionAccording to the results, passive avoidance learning and memory can improve the density of dopamine D1 receptors in the hippocampus, amygdala, and cerebellum of male rats.

Publisher

Wiley

Subject

Behavioral Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3