Effect of Tetrapropylammonium Chloride Quaternary Ammonium Salt on Characterization, Cytotoxicity, and Antibacterial Properties of PLA/PEG Electrospun Mat

Author:

Şener Sena Özdil1,Samatya Yilmaz Sema2ORCID,Doganci Merve Dandan13ORCID,Doganci Erdinc3

Affiliation:

1. Science Institute, Department of Biomedical Engineering Kocaeli University Kocaeli Türkiye

2. Engineering Faculty, Department of Chemical Engineering Kocaeli University Kocaeli Türkiye

3. Department of Chemistry and Chemical Processing Technologies Kocaeli University Kocaeli Türkiye

Abstract

ABSTRACTIn this study, poly(lactic acid) (PLA)–tetrapropylammonium chloride (TCL)–poly(ethylene glycol) (PEG) nonwoven networks were produced using PLA, PEG with different concentrations (3, 5, 7, and 9 wt%), and TCL. PEG is included as a plasticizer in PLA polymer, which has high biocompatibility but a brittle structure. The importance of this study is to investigate the effect of TCL salt on the characterization of PLA–PEG nanofibers. For this research, the cytotoxicity test system responsible for the fibroblast cell line (L929) was evaluated with the liquid absorption capacity (LAC) and drying time tests for its use in wound dressings. The addition of TCL salt reduced bead formation in PLA–PEG nanofibers and increased the homogeneity of fiber dispersion. The smoothest and most homogeneous nonwoven networks were obtained as PLA–5TCL–PEG. It was also reported that this nonwoven network exhibited liquid absorption behavior with a maximum increase of 150% compared to the PLA–PEG nonwoven network and had the highest Young's modulus value of 12.97 MPa. In addition to these tests, evaluations were made with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), drying time test, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and mechanical tests. In addition, high cell viability was observed in L292 mouse fibroblast cells at the end of the 24th hour, again with the effect of TCL salt. In addition, antibacterial activity was tested against gram‐negative E. coli and gram‐positive S. aureus bacteria, and it was observed that there was no antibacterial activity. Since PLA–TCL–PEG nonwoven webs have a maximum cell viability of 133.27%, they are recommended as a potential dermal wound dressing.

Funder

Kocaeli Üniversitesi

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3