Regulating the Metallic Cu–Ga Bond by S Vacancy for Improved Photocatalytic CO2 Reduction to C2H4

Author:

Wang Junyan1ORCID,Yang Chen2,Mao Liang3,Cai Xiaoyan3,Geng Zikang4,Zhang Haoyu4,Zhang Junying5,Tan Xin16,Ye Jinhua78,Yu Tao4ORCID

Affiliation:

1. School of Environmental Science and Engineering Tianjin University Tianjin 300350 P. R. China

2. College of Energy and Chemical Engineering Tianjin Renai College Tianjin 301636 P. R. China

3. School of Materials Science and Physics China University of Mining and Technology Xuzhou 221116 P. R. China

4. School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P.R. China

5. School of Physics Beihang University Beijing 100191 P. R. China

6. School of Science Tibet University Lhasa 850000 P. R. China

7. International Center for Materials Nano architectonics (WPI‐MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba 305‐0047 Japan

8. TJU‐NIMS International Collaboration Laboratory Tianjin University Tianjin 300350 P. R. China

Abstract

AbstractArtificial photosynthesis, which converts carbon dioxide into hydrocarbon fuels, is a promising strategy to overcome both global warming and energy crisis. Herein, the geometric position of Cu and Ga on ultra‐thin CuGaS2/Ga2S3 is oriented via a sulfur defect engineering, and the unprecedented C2H4 yield selectivity is ≈93.87% and yield is ≈335.67 µmol g−1 h−1. A highly delocalized electron distribution intensity induced by S vacancy indicates that Cu and Ga adjacent to S vacancy form Cu–Ga metallic bond, which accelerates the photocatalytic reduction of CO2 to C2H4. The stability of the crucial intermediates (*CHOHCO) is attributed to the upshift of the d‐band center of ultra‐thin CGS/GS. The C–C coupling barrier is intrinsically reduced by the dominant exposed Cu atoms on the 2D ultra‐thin CuGaS2/Ga2S3 in the process of photocatalytic CO2 reduction, which captures *CO molecules effectively. This study proposes a new strategy to design photocatalyst through defect engineering to adjust the selectivity of photocatalytic CO2 reduction.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3