Surface Atomic Rearrangement with High Cation Ordering for Ultra‐Stable Single‐Crystal Ni‐Rich Co‐Less Cathode Materials

Author:

Wang Wei1,Xiao Zhiming1,Liu Junxiang2,He Xinyou1,Wen Jianguo3,Zhou Yanan4,Cheng Lei14,Zhang Bao1,Liu Tongchao2,Amine Khalil2ORCID,Ou Xing1

Affiliation:

1. Engineering Research Center of the Ministry of Education for Advanced Battery Materials School of Metallurgy and Environment Central South University Changsha 410083 P. R. China

2. Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA

3. Center for Nanoscale Materials Argonne National Laboratory Lemont IL 60439 USA

4. Zhejiang Power New Energy Co. Ltd Zhuji 311899 P. R. China

Abstract

AbstractIt is crucial to minimize cobalt content in Ni‐rich layered single‐crystal cathodes due to their high price and limited availability, yet it will inevitably lead to cation disordering, capacity degradation, and thermal issues. Herein, to overcome the intrinsic trade‐off between performance and composition of Ni‐rich Co‐less single‐crystal cathodes, a precursor engineering strategy with an epitaxially grown cobalt enrichment on the surface is innovatively proposed. In contrast to traditional coating modifications with random orientation and rigid surface‐bulk boundary, the epitaxially enriched surface cobalt layer on the precursor undergoes rapid interdiffusion with the internal Ni3+ during the optimized sintering process. This interdiffusion eliminates the surface‐bulk boundary, promoting the uniform distribution of cobalt and synergistically addressing the Li/Ni intermixing. Moreover, an enhanced surface Li+ diffusion is obtained, thereby suppressing the Li+ concentration gradient and intragranular cracks generation. Consequently, the modified LiNi0.7Co0.07Mn0.23O2 exhibits impressive cycling stability with increased capacity retention in both coin‐type half‐cells and pouch‐type full‐cells (91% after 1000 cycles), even under the harsh condition of high‐temperature, surpassing the majority of previously reported Ni‐rich cathodes. This work opens new avenues toward the low cost, high energy density, thermal stability, and long cyclic life for Ni‐rich Co‐less cathodes and sheds light on large‐scale commercial production.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Vehicle Technologies Office

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3