Affiliation:
1. State Key Laboratory of Advanced Welding and Joining School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
2. School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
Abstract
AbstractLithium‐rich manganese‐based cathode materials (LLMO) are considered as the promising candidates for realizing high energy density lithium‐ion batteries. However, the severe structure deterioration and capacity fading hinder their large‐scale application. Herein, an innovative electrochemical lithium supplement strategy is put forward to inhibit the structure collapse and enhance the cycling stability of Lithium‐rich manganese‐based cathodes. Besides, combining with the superior Li‐ion conductor Li6.25La3Zr2Al0.25O12 (LLZAO), remarkable rate capability is achieved. As a result, a capacity retention of 95.7% after 300 cycles at 1.0 C (1.0 C = 200 mA g−1), as well as a stable cycling at 5.0 C with discharge capacity of 136.9 mAh g−1, are harvested. Moreover, the excess lithium ions in LLZAO mitigate the spinel‐like phase transformation via inserting into the lithium layer and stabilizing the cathode structure. In addition, the lithium ions migration behavior in the elaborated cathode is thoroughly expounded and the correlation between diffusion kinetics and LLZAO is revealed. These findings boost the updating of LLMO and pave a new pathway for stabilizing LLMO structures.
Funder
National Natural Science Foundation of China
State Key Laboratory of Advanced Welding and Joining
Harbin Institute of Technology
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献