Epi‐Endocytic Performance Engineering through Nanomaterials Co‐Challenging: A Study of Mechanism and Implication in Radiotherapy

Author:

Zhao Huiyue1,Zheng Liuting2,Ma Ruxuan2,Ding Chengjin2,Wang Fei1,Qin Shuheng1,Ding Qingqing3,Jiang Guangliang4,Hu Yong1,Huo Da2ORCID

Affiliation:

1. College of Engineering and Applied Sciences MOE Key Laboratory of High‐Performance Polymer Materials & Technology Nanjing University Nanjing 210033 China

2. Key Laboratory of Cardiovascular and Cerebrovascular Medicine Department of Pharmaceutics School of Pharmacy Nanjing Medical University Nanjing 211166 China

3. Department of Geriatric Oncology The First Affiliated Hospital of Nanjing Medical University Nanjing 211166 China

4. Department of Urology Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 China

Abstract

AbstractWhile the influence of size on nanomaterial uptake has been extensively explored, it remains elusive how cells simultaneously respond to multiple, size‐varying particles due to the lack of a proper quantitative assay. In this study, a strategy named “metal‐doping engineering” is developed, and constructed a library of multi‐elemental alloys (MEAs) features precisely controlled size and dopant dosage for quantification with mass spectra. Next a comprehensive study of cellular uptake behaviors is conducted when treated with dual‐, triple‐, and quadra‐, size‐differing nanoparticles. Specifically, the exposure to triple‐, and quadra‐, size‐differing MEAs resulted in an unprecedented, enhanced uptake of counterpart in the middle size as 10/20 nm. Further efforts including RNA‐sequencing and photo‐affinity labeling‐assisted proteomics are devoted to uncovering the underlying mechanism, wherein the role of nonconical endocytic pathways in fast‐endophilin‐mediated endocytosis is uncovered. Given the capacity of MEAs as chaperones to facilitate the uptake of one featuring a predetermined size promoted to propose a straightforward, “bystander nanomaterials”‐assisted drug delivery strategy, whose superior dosage‐reduced radio‐sensitization performance and anti‐tumoral outcome are confirmed in vivo.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3