Construction of Tri‐Functional HOFs Material for Efficient Selective Adsorption and Photodegradation of Bisphenol A and Hydrogen Production

Author:

Yang Liujun1,Yuan Junwei1,Wang Guan1,Cao Qiang1,Zhang Cheng1,Li Miaomiao1,Shao Junxia1,Xu Yan1,Li Hua12,Lu Jianmei12ORCID

Affiliation:

1. College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China

2. National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection Suzhou Jiangsu 215123 China

Abstract

AbstractThis study proposes the construction of porous nanomaterial (HOFs@Fe3+) which anchors non‐noble metal ions Fe3+ onto nanoscale rod‐like hydrogen‐bonded organic frameworks (HOFs) by electrostatic and coordination interactions. The high specific surface area and the abundance of hydrogen‐bond adsorption active sites in pore structure of HOFs@Fe3+ facilitate strong interactions with the double OH in bisphenol A (BPA), resulting in the highest saturation adsorption of BPA that has been reported so far (452 mg g‐1). In addition, the ordered conjugate stacking framework structure and hydrogen bond of HOFs@Fe3+ and the variable valence properties of Fe3+ create new pathways for efficient separation of photogenerated carriers. The results show that HOFs@Fe3+ can completely adsorb and photodegrade 50 ppm BPA within 20 min, owing to the abundant hydrogen bond that acts both as adsorption sites to accelerate the mass transfer process and as catalytic sites to ensure adsorption and photodegradation can be matched synergistically. Meanwhile, the efficiency of photocatalytic H2 production by HOFs@Fe3+ reaches 21.55 mmol g‐1 h‐1 with non‐noble metal Fe3+ as co‐catalyst. This tri‐functional material with high adsorption capacity, high photodegradation efficiency, and high photocatalytic H2 production activity can be successfully used to solve the long‐standing conflict between environment and energy.

Funder

Science and Technology Program of Suzhou

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3