Interlayer Spacing Regulation by Single‐Atom Indiumδ+–N4 on Carbon Nitride for Boosting CO2/CO Photo‐Conversion

Author:

Ding Cheng1,Lu Xinxin2,Tao Bo1,Yang Liuqing3ORCID,Xu Xiaoyong4,Tang Lanqin5,Chi Haoqiang1,Yang Yong6,Meira Debora Motta7,Wang Lu2,Zhu Xi2,Li Si8,Zhou Yong129,Zou Zhigang12

Affiliation:

1. Key Laboratory of Modern Acoustics (MOE) Institute of Acoustics School of Physics National Laboratory of Solid State Microstructures Collaborative Innovation Center of Advanced Microstructures Eco‐Materials and Renewable Energy Research Center (ERERC) Jiangsu Key Laboratory for Nano Technology Nanjing University Nanjing Jiangsu 210093 P. R. China

2. School of Science and Engineering The Chinese University of Hongkong (Shenzhen) Shenzhen Guangdong 518172 P. R. China

3. College of Science Nanjing Forestry University Nanjing Jiangsu 210037 P. R. China

4. Chemistry Interdisciplinary Research Center Yangzhou University Yangzhou Jiangsu 225009 P. R. China

5. Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province Yancheng Institute of Technology Yancheng Jiangsu 224051 P. R. China

6. Key Laboratory of Soft Chemistry and Functional Materials (MOE) Nanjing University of Science and Technology Nanjing Jiangsu 210094 P. R. China

7. Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA

8. National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences and School of Physics Nanjing University Nanjing Jiangsu 210093 P. R. China

9. School of Chemical and Envrionmental Engineering Anhui Polytechnic University Wuhu Anhui 241000 P. R. China

Abstract

AbstractSimultaneous optimization on bulk photogenerated‐carrier separation and surface atomic arrangement of catalyst is crucial for reactivity of CO2 photo‐reduction. Rare studies capture the detail that, better than in‐plane regulation, interlayer‐spacing regulation may significantly influence the carrier transport of the bulk‐catalyst thereby affecting its CO2 photo‐reduction in g‐C3N4. Herein, through a single atom‐assisted thermal‐polymerization process, single‐atom In‐bonded N‐atom (Inδ+–N4) in the (002) crystal planes of g‐C3N4 is originally constructed. This Inδ+–N4 reduces the (002) interplanar spacing of g‐C3N4 by electrostatic adsorption, which significantly enhances the separation of bulk carriers and greatly promotes the reactivity of CO2 photoreduction. The CO2 photo‐conversion performance of this resulted single‐atom In modified g‐C3N4 is significantly superior to other single atom loaded carbon nitride catalysts. Moreover, the Inδ+–N4 enhances the CO2 adsorption on g‐C3N4, reduces the *COOH formation energy, and optimizes the reaction path. It achieves a remarkable 398.87 µmol g−1 h−1 yield rate, 0.21% apparent quantum efficiency, and nearly 100% selectivity for CO without any cocatalyst or sacrificial agent. Through d(002) modulation of carbon nitride by single In atom, this study provides a ground‐breaking insight for reactivity enhancement from a double‐gain view of bulk structural control and surface atomic arrangement for CO2‐reduction photocatalysts.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3