Affiliation:
1. School of Physics Dalian University of Technology Dalian 116024 P. R. China
2. Department of Physics Government College University Faisalabad Faisalabad 38000 Pakistan
3. Institute for Advanced Study Shenzhen University Shenzhen Guangdong 518060 P. R. China
4. Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
5. Center of Material Science Islamia College Peshawar Peshawar 25120 Pakistan
Abstract
AbstractHigh fabrication cost, chemical instability, and complex immobilization of enzyme molecules are critical issues of enzyme‐based glucose sensors. Designing state‐of‐the‐art, binder‐free, and non‐enzymatic glucose sensing probes plays an imperative role to cope with the aforementioned issues. 3D carbonaceous nanomaterials coated with transition metal vanadates (TMVs) are a favorable biomimetic platform for glucose quantification. Peculiar hierarchical structure, enhanced conductivity, synergistic interaction, multiple oxidation states, and high catalytic activity would make such composite a potential contender for non‐enzymatic glucose sensing. Herein, 3D helical‐shaped carbon nanocoils (CNCs) are grown on nickel foam (NF) via chemical vapor deposition method to prepare a robust CNCs/NF scaffold. Then, a hydrothermal route is followed to grow interconnected free‐standing Ni3V2O8 nanosheets (NSs) on CNCs/NF scaffold. This novel and binder‐free Ni3V2O8 NSs/CNCs/NF hierarchical composite possesses superior electrochemical active area (ECSA) and exceptional electrochemical efficacy. Amperometric analysis exhibits extremely prompt detection time (0.1 s), elevated sensitivity (5214 µA mM−1 cm−2), and low detection limit (0.04 µM). Developed sensor demonstrates appreciable recoveries (93.3 to 103.3%) regarding glucose concentration in human serum. The appealing analytical results show that deployment of a 3D helical‐shaped hierarchical smart scaffold can be an effective strategy for developing efficient and advanced non‐enzymatic glucose sensors.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
China Postdoctoral Science Foundation
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献